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Multipoint Estimation of Genetic Maps for Human Trisomies with One
Parent or Other Partial Data
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Centromeric-mapping methods have been used to investigate the association between altered recombination and
meiotic nondisjunction in humans. For trisomies, current methods are based on the genotypes from a trisomic
offspring and both parents. Because it is sometimes difficult to obtain samples from both parents and because the
ability to use sources of DNA previously not available (e.g., stored paraffin-embedded pathological samples) has
increased, we have been interested in creating similar maps for trisomic populations in which one of the parents
of the trisomic individual is unavailable for genotyping. In this paper, we derive multipoint likelihoods for both
missing-parent data and conventional two-parent data. We find that likelihoods for two-parent data and for data
generated without a sample from the correctly disjoining parent can be maximized in exactly the same way but
also that missing-parent data has a high frequency of partial data of the same sort produced by intercross matings.
Previously published centromeric-mapping methods use incorrect likelihoods for intercross matings and thus can
perform poorly on missing-parent data. We wrote a FORTRAN program to maximize our multipoint likelihoods
and used it in simulation studies to demonstrate the biases in the previous methods.

Introduction

Recent work on the etiology of trisomy has documented
a strong association between altered recombination and
meiotic nondisjunction in both humans and Drosophila
(Warren et al. 1987; Sherman et al. 1991; Sherman et
al. 1994; Koehler et al. 1996). As reviewed by Koehler
et al. (1996), genetic maps of the nondisjoined chro-
mosome have been used to investigate recombination
patterns for trisomies 16, 18, and 21 and the sex chro-
mosomes. Similar methods have also been used to study
the behavior of recombination in uniparental disomy 15
(Mascari et al. 1993; Robinson et al. 1993) and in hu-
man ovarian teratomas (Chakravarti et al. 1989; Deka
et al. 1990). We have been interested in creating maps
for trisomic populations in which one of the parents of
the trisomic individual is unavailable for genotyping. For
example, since the majority of trisomies result in spon-
taneous abortions, only pathological samples—includ-
ing maternal and fetal tissue samples—are generally
available for study. But current centromeric-mapping
methods (e.g., Chakravarti et al. 1989, Morton et al.
1990) assume data from both parents are available.

In this paper, we derive multipoint likelihoods for
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both missing-parent data and conventional two-parent
data. We find that likelihoods for two-parent data and
for data generated without a sample from the correctly
disjoining parent are the same up to constants and thus
can be maximized in exactly the same way. However,
missing-parent data has a very high frequency of partial
data of the same sort produced by intercross matings,
and the likelihoods for this type of data are not quite
correct in the previously published centromeric-map-
ping methods. We describe our FORTRAN program,
NDJMap, which maximizes our likelihoods using an
estimation-maximization (EM) algorithm (Little and
Rubin 1987) and present simulation results demonstrat-
ing the bias in previous methods. The bias is not sub-
stantial for most of the realistic two-parent data sets we
tried, but is a problem in the missing-parent data sets.

Data for Human Trisomy Mapping

The basic unit of data for a genetic map of a nondis-
joined chromosome is a trisomic offspring along with
one or two parents. These two or three individuals are
genotyped for markers along the trisomic chromosome.
Typically it is not difficult to establish the parent of or-
igin of the extra chromosome if enough markers are
typed. We will call the parent of origin of the extra
chromosome the “nondisjoining parent” (NDJP) and the
other parent the “correctly disjoining parent” (CDJP).
In a meiosis II nondisjunction, the two chromosomes
inherited from the nondisjoining parent are sister chro-
matids and are identical by descent at the centromere.
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Table 1

Coding of the Marker Status, Given Various Parental
Genotypes When Both Parents Are Genotyped

NDJP
Genotype

CDJP
Genotype Child Genotype

Marker
Status

ab cd abc, abd N
aac, bbc, aad, bbd R

ab bc abc, abb N
aab, aac, bbb, bbc R

ab cc abc N
aac, bbc R

ab bb abb N
bbb, aab R

ab ab abb, aab X
aaa, bbb R (D)

aa Anything Anything U

In a meiosis I nondisjunction, the two chromosomes are
not sister chromatids and are not identical by descent
at the centromere. Because of recombination, the two
chromosomes may or may not be identical by descent
at loci other than the centromere. At any given locus,
the two chromosomes are described as “reduced to ho-
mozygosity” (coded as “R”) if they are identical by de-
scent, and “nonreduced” (coded as “N”), if they are not
identical by descent. The distance between two loci is
usually parameterized in terms of y, which can be defined
as the probability of being in state N at the second locus
given that the half-tetrad is in state R at the first locus.
If there is no chiasma interference, y = (2/3) [1 � (1 �

, where v is the usual recombination fraction be-3/22v) ]
tween the two loci. When the distance is small, .y ≈ 2v

In nondisjunction mapping, the order of markers is not
generally an issue, since the order is established in the
normal map, so “creating a map” means estimating the
y values for all the intervals and possibly converting
those values to genetic distances. Chakravarti and Slau-
genhaupt (1987) give a quite complete review of this
terminology and the related mathematical models, ex-
tending a large body of previous work (e.g., Cote and
Edwards 1975; Morton and Maclean 1984; Shahar and
Morton 1986).

A completely informative marker provides unequiv-
ocal information about whether the two chromosomes
are R or N at the locus. If all markers are completely
informative, creating a genetic map is straightforward
under the assumption of no interference (e.g., Chak-
ravarti and Slaugenhaupt 1987), and can also be han-
dled under a x2 model of interference (Zhao and Speed
1998). Unfortunately, not all markers are fully infor-
mative in typical human data. Table 1 shows our coding
of the marker information status, given various parental
genotypes, when both parents are available for geno-
typing. If the nondisjoining parent is homozygous, the
marker is completely uninformative, which we code as
“U.” Untyped markers can also be considered unin-
formative, as long as any decisions about whether to
type markers are independent of what the true state is
(N or R) at that marker. Intercross matings can produce
an R or an X (D or X in the notation of most previous
work). A marker status of X indicates that the marker
is partially informative; we do not have unequivocal
information about whether the true state is N or R, but
some information is added because the probability of
observing an X depends on what the true state is. For
example, if the results for three ordered loci are NUN,
we know that the middle marker’s true state is likely
to be N, simply because it is flanked by two Ns. But if,
instead, we observe NXN, it is even more likely that
the true state at the middle marker is N, because a true
N is more likely to be observed as an X than is a true

R. Exact probabilities for these events are described in
the Multipoint Likelihoods section below.

Table 2 shows our coding of the marker status, given
various parental genotypes, when one parent is una-
vailable for genotyping. It is fairly common for the
CDJP (who in most cases is the father) to be unavailable
and less common for the NDJP to be missing. In the
tables we have used X to indicate any partially infor-
mative marker. In fact, the information provided by an
X (i.e., the relative probabilities that the X represents
a true N or R) depends on the type of data (two-parent,
missing CDJP, missing NDJP); this is discussed in detail
in the next section. While Xs are fairly uncommon in
two-parent data—as long as the markers are reasonably
informative—they can be quite common in missing-par-
ent data. For example, for a marker with five equally
frequent alleles (assuming random mating), the prob-
ability of observing an X, given that the true state is N,
is only .064 for two-parent data but is .32 for missing-
CDJP data. For a marker with two equally frequent
alleles, the corresponding probabilities are .25 and .5.
Note that the issues of missing parents and partially
informative data do not arise in either ovarian terato-
mas or uniparental disomy, both of which produce only
N, R, and U data.

Multipoint Likelihoods

After coding the marker data as described in table 1 and/
or table 2, the data for a given trisomic individual will
consist of a string of ordered loci, e.g. NURRXRXXU.
We assume that the leftmost locus represents the cen-
tromere, so that we are mapping one arm of a chro-
mosome at a time. We further assume that the centrom-
eric marker is fully informative (no Xs or Us allowed in
the first spot), so that we know whether this chromo-
some is the result of a meiosis I or a meiosis II nondis-
junction. In practice, this is generally accomplished by
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Table 2

Coding of the Marker Status, Given Various Parental Genotypes One Parent Is Missing

NDJP Genotype CDJP Genotype Child Genotype Marker Status

ab Missing abc N
aac, bbc, aaa, bbb R
aab, abb X

aa Missing Anything U
Missing aa aab, abc N

abb, aaa X
Missing ab acd, bcd, abc N

aaa, bbb, abb, aab, acc, bcc X

typing several closely-spaced markers as close to the cen-
tromere as possible. The likelihood of observing any
given string of marker data can be written as a function
of the y parameters between each pair of markers.

The basic mathematical model we work with is that
at every locus on the chromosome, including those
where we have markers and those where we do not,
there exists an unseen true state of N or R. By assuming
no crossover interference, we can model the process of
transitions between these two states, as we move along
the chromosome, as a continuous-time Markov process.
That is, the no-interference assumption gives the Mar-
kov property that the probability of a transition in any
interval of the chromosome does not depend on what
has happened in any other interval. The Markov process
starts at the centromere in state N for a meiosis I non-
disjunction and in state R for a meiosis II nondisjunc-
tion. Between any two markers, the probabilities of var-
ious types of transitions can be calculated as a function
of the y parameter for that interval. If we are in state
R, the probability of still being in state R at the next
marker is , and the probability of switching to state1 � y
N is y. If we are in state N, the probability of still being
in state N at the next marker is , and the prob-1 � y/2
ability of switching to state R is y/2 (Chakravarti and
Slaugenhaupt 1987). The string of data we actually ob-
serve is a random function of the underlying Markov
process. This is known as a hidden Markov process.

Let the vector W be the string of observed data, and
let T be the string representing the true state of the
Markov process at each marker. The likelihood that we
want to compute is , which can be calculated byP(W)
conditioning on the underlying true state by use of the
formula

( ) ( ) ( )P W = w = P T = t P W = wFT = t .�
t

The probabilities of each true state, , can beP(T = t)
written simply as a function of the interval-by-interval
probabilities given above. For example, the probability
of NNRRRN is ,(1 � y /2)(y /2)(1 � y )(1 � y )(y )1 2 3 4 5

where y1, y2,)y5 are the y parameters for the five in-

tervals. Note that there is no term in this likelihood for
the probability that the first marker is N; the likelihood
is really the conditional probability that markers 2–6
are NRRRN, given that the first marker is N. The prob-
abilities seem at first to be complicatedP(W = wFT = t)
but in fact are fairly simple, because they are indepen-
dent for each locus. That is, given the true underlying
string, what we actually observe at each locus depends
only on the true status at that locus and not on the true
status at any other loci. For example, if we have both
parents available and the true state is N at a given locus,
we observe X instead of N if and only if the parents
are an intercross mating at that locus, an event that
clearly does not depend on the true state of the off-
spring at any other locus. So, to compute P(W =

for a string of data, we just need to calculatewFT = t)
all the one-marker conditional probabilities—for ex-
ample, P(observe X F true state is N). Then, we multiply
these probabilities for all the markers in the string, omit-
ting only the first marker, whose state we are condi-
tioning on. These probabilities depend on the type of
data—two-parent, missing-CDJP, or missing-NDJP—so
we discuss each case separately. In the following ex-
position, we omit, for clarity, the probability that mark-
ers are untyped, but it is not difficult to add that to the
models shown, and it does not affect our results.

If both parents are available for genotyping and the
mating type at this marker is not an intercross (i.e. we
cannot observe an X), the probabilities are simply

P(observe RFtrue state is R) = 1 � h

P(observe RFtrue state is N) = 0

P(observe NFtrue state is R) = 0

P(observe NFtrue state is N) = 1 � h

P(observe UFtrue state is R) = h

P(observe UFtrue state is N) = h , (1)
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where h is the probability that the nondisjoining parent
is homozygous at the marker. This parameter does not
need to be known or estimated, however, because all
that matters in the likelihood is the ratio of each pair
of lines above—for example, P(observe R F true state
is R) / P(observe R F true state is N). To demonstrate
this in a simple example: suppose we want to find the
likelihood of the string RU. We calculate

P(W = RU) = P(T = RR)P(W = RUFT = RR)

�P(T = RN)P(W = RUFT = RN)

= (1 � y)(1 � h)(h) � (y)(1 � h)(h) .

The ( ) and h are constant in both terms, so they1 � h
do not matter in maximizing the likelihood. Thus, for
the purpose of maximizing the likelihood, the proba-
bilities in equation set (1) can be treated equivalently
as

P(observe RFtrue state is R) ∝ 1

P(observe RFtrue state is N) ∝ 0

P(observe NFtrue state is R) ∝ 0

P(observe NFtrue state is N) ∝ 1

P(observe UFtrue state is R) ∝ 1

P(observe UFtrue state is N) ∝ 1 . (2)

If we have both parents available but also have an in-
tercross mating at this marker, the probabilities are

P(observe RFtrue state is R) = 1 � c/2

P(observe RFtrue state is N) = 0

P(observe NFtrue state is R) = 0

P(observe NFtrue state is N) = 1 � c

P(observe XFtrue state is R) = c/2

P(observe XFtrue state is N) = c ,

where c is the probability that the parental mating type
is an intercross at the marker. The equation

is a result of the in-P(observe XFtrue state is R) = c/2
formation in table 1 and the assumption that the allele
inherited from the CDJP is independent of the alleles
inherited from the NDJP. If we again eliminate param-
eters that are constant in the likelihood, we have

P(observe RFtrue state is R) ∝ 1

P(observe RFtrue state is N) ∝ 0

P(observe NFtrue state is R) ∝ 0

P(observe NFtrue state is N) ∝ 1

P(observe XFtrue state is R) ∝ 1/2

P(observe XFtrue state is N) ∝ 1 . (3)

Since this matches equation set (2), we have the con-
venient result that we need only one set of equations
for both intercross and nonintercross cases. Combining
equation sets (2) and (3), we get

P(observe RFtrue state is R) ∝ 1

P(observe RFtrue state is N) ∝ 0

P(observe NFtrue state is R) ∝ 0

P(observe NFtrue state is N) ∝ 1

P(observe XFtrue state is R) ∝ 1/2

P(observe XFtrue state is N) ∝ 1

P(observe UFtrue state is R) ∝ 1

P(observe UFtrue state is N) ∝ 1 . (4)

Even more conveniently, we have found that equation
set (4) is also correct for data where the CDJP is not
genotyped. In that case the full probabilities are

P(observe RFtrue state is R) = (1 � h)[p � (1 � p)/2]

P(observe RFtrue state is N) = 0

P(observe NFtrue state is R) = 0

P(observe NFtrue state is N) = (1 � h)p

P(observe XFtrue state is R) = (1 � h)[(1 � p)/2]

P(observe XFtrue state is N) = (1 � h)(1 � p)

P(observe UFtrue state is R) = h

P(observe UFtrue state is N) = h ,
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where p is the probability that the CDJP contributes an
allele that is different from either of the alleles of the
NDJP, given that the NDJP is a heterozygote. That is,
looking at table 2, if the NDJP is a heterozygote and
the true state is N, we observe an N if and only if the
CDJP contributes an allele different from those of the
NDJP (probability p, as defined above). If the NDJP is
a heterozygote and the true state is R, we observe an
R if the CDJP contributes a different allele from those
of the NDJP (probability p), but also if the CDJP con-
tributes an allele that matches the one owned but not
contributed by the NDJP (probability ). The(1 � p)/2
probability p can be estimated from population allele
and genotype frequencies, but we do not need to do so
because, like h and c, it is constant in the likelihood.

Thus, we can use equation set (4) to compute like-
lihoods in exactly the same way for two-parent data
and for missing-CDJP data, without needing to know
which of those two types of data we are dealing with
and without having to know anything about mating
types or genotype frequencies. An immediate implica-
tion of this result is that it is, after all, hypothetically
appropriate to use existing centromeric-mapping meth-
ods with data in which the CDJP is missing. However,
because missing-CDJP data has a high frequency of Xs,
as compared with two-parent data, we found that the
existing methods estimated biased maps (see Simulation
Results).

The case where the NDJP (generally the mother) is
missing is not as simple, and genotype frequencies are
required to calculate the likelihood. The necessary prob-
abilities when the CDJP is homozygous are

P(observe NFtrue state is R) = 0

P(observe NFtrue state is N) = 1 � h

P(observe XFtrue state is R) = 1

P(observe XFtrue state is N) = h ,

and, when the CDJP is heterozygous, are

P(observe NFtrue state is R) = 0

P(observe NFtrue state is N) = 1 � h � c

P(observe XFtrue state is R) = 1

P(observe XFtrue state is N) = h � c .

Note that the frequencies h and c will be different for
each marker, depending on the population genotype fre-
quencies at that marker. To use such chromosomes in
the creation of maps therefore requires estimates of h

and c for each marker, and also a designation of which
strings of data are from missing-NDJP cases.

Putting together all of the above, we can write the
likelihood of any string of markers for any of the three
types of data we want to consider. Except in the case
of missing-NDJP data, we do not need estimates of any
allele frequencies or other nuisance parameters. How-
ever, the likelihoods can be extremely complicated.
There is one parameter for each interval along the chro-
mosome, and, if a given string has a total of k Us and
Xs, there will be possible true strings, so the likeli-k2
hood will be the sum of terms. Then the likelihoodsk2
must be multiplied for all of the strings of data. Max-
imizing such a likelihood directly is possible when there
are only a few intervals, but the computation time rises
exponentially with the number of intervals and becomes
impractical quite quickly. The likelihood can be maxi-
mized quite easily, however, using the EM algorithm.
This iterative algorithm starts with a user-supplied guess
at the parameter values. The next step (the expectation
step, or E-step) is to compute the expected number of
each possible value of T, given the observed data and
the guessed parameter values. The maximization step,
or M-step, then maximizes the likelihood of this “ex-
pected data” and thus generates new estimates of the
parameters. These parameter estimates are fed back into
the E-step, and the algorithm iterates until it converges.
We implemented an EM algorithm to maximize our
likelihoods in a FORTRAN program called NDJMap.
A detailed description of our EM algorithm, including
an example, is given in the appendix. The EM algorithm
also allows for easy calculation of approximate stan-
dard errors of estimates; we have implemented this fea-
ture in our program using the method of Meng and
Rubin (1991). NDJMap handles only two-parent data
and missing-CDJP data, but it would be straightforward
to add the ability to handle missing-NDJP data by
means of the probabilities given above and an extra data
file with the needed genotype frequencies.

Theoretical Comparison to Previous Methods

Existing methods for centromeric mapping are imple-
mented in the software packages DSLINK (Halloran and
Chakravarti 1987; Chakravarti et al. 1989) and TET-
RAD/MAP/Map� (Morton and Andrews 1989; Morton
et al. 1990; Collins et al. 1996). There are two important
differences in basic estimation methods among the pro-
grams: method of handling Xs and method of incor-
porating multipoint information. Our method (imple-
mented in NDJMap) incorporates multipoint informa-
tion by maximizing a multipoint likelihood, which is the
statistically optimal method under the assumption of no
interference. DSLINK also maximizes a multipoint like-
lihood, assuming no interference. The authors of TET-
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RAD have argued that, since the assumption of no in-
terference is known to be wrong, it is more appropriate
to estimate all pairwise distances between markers and
then combine these using “multiple pairwise linkage”
methods that incorporate interference assumptions.
Thus, TETRAD computes the distances between all pairs
of markers (both adjacent and nonadjacent pairs), and
MAP combines the pairwise estimates to produce a final
map. The program Map� is a newer implementation
that combines these calculations into one program. The
issue of whether multipoint maximum likelihood or mul-
tiple pairwise linkage is a better method of incorporating
multipoint information is an extremely complicated one,
and we will not attempt to resolve it in this paper. We
are primarily interested in the method of handling Xs,
since that bears on the appropriateness of the methods
for missing-parent data. (In fact, missing-parent data
does not have Us at all, except for untyped markers).

DSLINK handles intercross matings by using the in-
formation whenever the marker can be recorded as an
R (D), but ignoring Xs. This is quite clearly a biased
procedure. For example, in meiosis I cases, all chro-
mosomes start with N. If the second marker is an in-
tercross, it goes into the calculation only if it is an R
and is thrown out if the true value is N (recorded as
X). Thus, the program uses an excess of NR strings,
biasing the estimate of y upward. The bias is in the
opposite direction for meiosis II cases.

To handle Xs, TETRAD calculates the likelihoods of
the strings NX, XN, RX, and XR, since it is only cal-
culating two-marker likelihoods. The likelihood of NX
is calculated the same way we calculate it, as

P(W = NX) = P(T = NN)P(W = NXFT = NN)

�P(T = NR)P(W = NXFT = NR)

= [1 � (y/2)](1) � (y/2)(1/2)

= 1 � (y/4) .

The likelihood of RX is calculated analogously. The
likelihood of XN is assumed to be equal to the likeli-
hood of NX. In conventional (noncentromeric) genetic
mapping, this kind of symmetry is correct, because, in
the absence of any marker data, at every locus, the chro-
mosome being examined is equally likely to be identical
by descent with the chromosomes of either grandparent.
That is, from a mathematical point of view, the under-
lying Markov chain of recombination states is in its
limiting distribution at every point on the chromosome.
But centromeric mapping is different, because, in fact,
there is a point on the chromosome (the centromere)
where the distribution is not the limiting distribution of
2/3 Ns and 1/3 Rs. Making the symmetry assumption
in centromeric mapping is mathematically equivalent to

assuming that the a priori probability of an N at each
locus is 2/3. For intervals near the telomere, where the
underlying Markov chain is approaching its limiting
distribution, the symmetry assumption should be nearly
correct, but it is wrong near the centromere if one is
mapping a pure meiosis I or pure meiosis II population.
TETRAD does not calculate a likelihood for XX inter-
vals, presumably because under the symmetry assump-
tion this likelihood does not depend on y. It is not clear
whether TETRAD calculates likelihoods for what its
authors call DX and XD intervals (see, e.g., table 4 of
Collins et al. 1996). Thus, TETRAD is calculating
slightly incorrect likelihoods for XN, XR, and XX. Un-
fortunately, these likelihoods cannot just be corrected.
It is actually not possible to correctly calculate likeli-
hoods for those pairs in centromeric mapping, because
any likelihood for a string starting with X implicitly
makes some assumption about the a priori probabilities
of N and R, which in turn depend on the genetic map.
It was this realization that pushed us into a multipoint
maximum likelihood approach to mapping, even
though there are very reasonable arguments for the mul-
tiple pairwise linkage approach.

Simulation Results

We did fairly extensive simulation studies using TET-
RAD, DSLINK, and NDJMap. The studies were de-
signed for three purposes: (1) to demonstrate the exis-
tence of the biases we claim are present in TETRAD and
DSLINK, (2) to see whether those biases are large
enough to make any practical difference, and (3) to val-
idate NDJMap. We simulated data by first setting the
“centromeric marker” to be N or R and then simulating
the rest of the true underlying string of Ns and Rs, as-
suming no interference. Then, for each marker except
the first, we simulated the observed data as a function
of the true state using the probabilities given in the Mul-
tipoint Likelihoods section above. Simulations used a
single chromosome arm, spanned by 7 to 20 equally
spaced markers. We tested values of y ranging from .05
to .4. We ran meiosis I and meiosis II data separately
and two-parent and missing-CDJP data separately, in
order to clearly assess any problems that might be lim-
ited to one kind of data. Most simulations used a single
large data set of 10,000 chromosomes or 400,000 chro-
mosomes, though some used 1,000 data sets of 400 chro-
mosomes so that we could look at variances of estimates
in addition to biases. In analyzing the simulated data,
we used TETRAD without MAP because we were in-
terested in an uncomplicated comparison of handling of
Xs. We present selected simulation results here, to high-
light the most important issues.

Table 3 gives results for what should be easy data for
all the programs: both parents genotyped on markers
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Table 3

Mean (SD) of Estimated y-Values for Simulated Data with Both Parents Genotyped

DATA TYPE

AND PROGRAM

USED

MEAN ESTIMATED y (SD) AT INTERVAL

1 2 3 4 5 6 7 8

Meiosis I data:
NDJMap .202 (.033) .198 (.036) .201 (.032) .202 (.032) .200 (.032) .200 (.032) .200 (.032) .201 (.033)
TETRAD .202 .195 .199 .201 .199 .200 .200 .201
DSLINK .204 (.045) .196 (.046) .196 (.041) .197 (.043) .195 (.041) .197 (.041) .207 (.045) .280 (.041)

Meiosis II data:
NDJMap .202 (.022) .199 (.025) .200 (.028) .201 (.027) .199 (.029) .200 (.029) .201 (.031) .199 (.031)
TETRAD .202 .202 .203 .203 .201 .201 .201 .200
DSLINK .198 (.030) .197 (.034) .201 (.037) .203 (.036) .204 (.040) .207 (.039) .216 (.040) .296 (.042)

NOTE.—Intervals are listed cenrtel. Simulation parameters are for markers with five equally frequent alleles. True value of y = .2
for all intervals. Total sample size is 400,000 chromosomes.

Table 4

Mean (SD) of Estimated y- Values for Simulated Data with CDJP Not Genotyped

DATA TYPE

AND PROGRAM

USED

MEAN ESTIMATED y (SD) AT INTERVAL

1 2 3 4 5 6 7 8

Meiosis I data:
NDJMap .198 (.036) .200 (.042) .202 (.040) .200 (.039) .201 (.039) .202 (.039) .198 (.038) .199 (.040)
TETRAD .198 .190 .197 .199 .204 .206 .203 .204
DSLINK .274 (.085) .234 (.085) .221 (.075) .206 (.072) .208 (.070) .218 (.063) .234 (059) .360 (.056)

Meiosis II data:
NDJMap .200 (.025) .200 (.031) .199 (.032) .201 (.035) .199 (.033) .199 (.037) .200 (.037) .200 (.038)
TETRAD .200 .228 .222 .219 .214 .213 .211 .209
DSLINK .146 (.037) .162 (.047) .169 (.056) .173 (.052) .182 (.053) .194 (.052) .220 (.51) .322 (.047)

NOTE.—Intervals are listed cenrtel. Simulation parameters are for markers with five equally frequent alleles. True value of y = .2
for all intervals. Total sample size is 400,000 chromosomes.

with five equally frequent alleles (random mating as-
sumed). There are nine markers, and the true value of
y is .2 (∼10 cM) in each interval. For NDJMap and
DSLINK, we ran 1,000 data sets of 400 chromosomes.
For TETRAD, we ran the same data as a single data
set of 400,000 chromosomes, for reasons discussed be-
low. The table shows mean y estimates to three decimal
places, so that patterns of bias can be seen clearly—but
it should be pointed out that, at most, two decimal
places are of practical interest. We also show standard
deviations of the estimates, computed over the 1,000
replicates. Standard errors (found by dividing the stan-
dard deviations by the square root of 1,000) are on the
order of .001. The only bias of practical importance
visible in these runs is a severe overestimation of the
last interval by DSLINK. DSLINK also has a somewhat
higher variance than does NDJMap.

Table 4 gives results for markers with five equally
frequent alleles, but with the CDJP missing. These runs
more clearly establish patterns of bias in both DSLINK
and TETRAD. TETRAD appears to always estimate the
first interval perfectly. The next interval is low for mei-
osis I data and high for meiosis II data, with the values
eventually stabilizing a little on the high side. DSLINK

starts high for meiosis I data and low for meiosis II
data, drifts back to correctness, but then goes up to
overestimate the last interval. These patterns in both
programs were consistent in essentially all of our runs
(including the results in table 3), though the amount of
bias was not always of practical importance.

Tables 3 and 4 clearly show that DSLINK has un-
acceptable levels of bias even for “easy” data, but for
TETRAD only the one-parent meiosis II data show an
amount of bias that is arguably important. To test
whether TETRAD’s bias is a problem in any realistic
two-parent scenario, we did simulations with diallelic
markers (equally frequent alleles). Table 5 shows these
results. The bias in the meiosis I data is not too serious,
but in the meiosis II data it is as high as 20%. This is
about the most uninformative two-parent data set we
could imagine actually using, so it provides a reasonable
upper bound on the amount of error that might be
expected from TETRAD for two-parent data.

Throughout our simulations, NDJMap gave com-
pletely consistent and unbiased results whether we used
it with small or with large data sets, but both DSLINK
and TETRAD showed occasional inconsistencies in es-
timates derived from data sets of different sizes. For
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Table 5

Mean (SD) of Estimated y-Values for Simulated Data with Both Parents Genotyped

DATA TYPE

AND PROGRAM

USED

MEAN ESTIMATED y (SD) AT INTERVAL

1 2 3 4 5 6 7 8

Meiosis I data:
NDJMap .199 (.046) .201 (.066) .194 (.069) .199 (.067) .200 (.065) .199 (.068) .201 (.067) .197 (.068)
TETRAD .199 .193 .193 .203 .208 .208 .210 .207

Meiosis II data:
NDJMap .200 (.033) .201 (.045) .199 (.053) .199 (.057) .199 (.058) .197 (.061) .195 (.061) .200 (.071)
TETRAD .200 .240 .236 .232 .225 .220 .215 .216

NOTE.—Intervals are listed cenrtel. Simulation parameters are for markers with two equally frequent alleles. True value of y = .2
for all intervals. Total sample size is 400,000 chromosomes.

Table 6

Estimated y-Values for Real Data on 435 Meiosis I Chromosomes with Both Parents Genotyped

PROGRAM USED

ESTIMATED y AT INTERVAL

1 2 3 4 5 6 7 8 9 10 11 12 13

NDJMap .06 .01 .02 .05 .03 .17 .04 .03 .15 .12 .06 .06 .03
TETRAD .03 .02 .03 .05 .05 .24 .07 .05 .15 .14 .19 .18 .04
DSLINK .05 .01 .02 .05 .03 .17 .04 .03 .15 .12 .06 .06 .03

example, the extreme overestimation of the last interval
by DSLINK was seen in all of our runs with 1,000 data
sets of 400 chromosomes, but was not seen in the runs
with a single data set of 10,000 chromosomes. We are
not sure what accounts for this discrepancy; the over-
estimation in the last interval of small data sets was seen
uniformly over all replicates, and was not the result of
pathological results in only some replicates (notice that
the standard deviation is approximately the same in the
last interval as in the other intervals). TETRAD, since
it is not doing multipoint calculation, occasionally finds
intervals in small data sets with no informative data at
all, and thus estimates y = 0. The problem appears to
be fixed by running MAP afterwards, though we did
not study this exhaustively. This complication was our
primary reason for running TETRAD on one large data
set instead of 1000 small ones.

Application to Real Data

We also applied all three programs to a data set of 435
people with trisomy 21 originating in maternal meiosis
I, with both parents genotyped, a slightly updated ver-
sion of the data set described in Lamb et al. (1996). In
general, these data have a low level of Xs and a high
level of Us (because of untyped markers) as compared
to most of our simulations, and shorter intervals. Results
are shown in table 6. No new results surfaced here,
except that TETRAD performed extremely poorly near
a few telomeric markers that were untyped in many of
the chromosomes. This problem was corrected when we

ran MAP to add a multipoint facet to TETRAD’s
estimates.

Discussion

We have presented multipoint likelihoods for trisomy
mapping with either one or two parents present, and
have described our program, NDJMap, which maxi-
mizes those likelihoods. We have also given both ana-
lytical and simulation-based comparisons of the differ-
ences between our likelihoods and those implemented
in DSLINK and TETRAD. For perfectly informative
data, all three methods should produce identical results,
as they are maximizing exactly the same likelihoods. All
three should also perform acceptably, though not iden-
tically, for data with Us but not Xs—such as that derived
from uniparental disomies or ovarian teratomas. But
both DSLINK and TETRAD show biases in handling
Xs. In DSLINK, there is a severe bias even for a moderate
level of Xs. The bias in TETRAD was not too serious
in any realistic two-parent mapping situation that we
tried, but could be a problem in missing-parent mapping.

In terms of computation time, NDJMap presents no
serious difficulties (and is much faster than TETRAD
or DSLINK). Elapsed run time for easy data was in-
stantaneous on a Power Macintosh 9600/300, and for
the hardest data sets it was only a few minutes. Al-
though the EM algorithm has a reputation for relatively
slow convergence in some problems, it converged quite
fast here, needing only a handful of iterations for easy
data sets and 20–40 iterations for the hardest ones. We
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used a fairly stringent convergence criterion of a change
between iterations of !.00001 in every y value and then
reported the y values to three digits. Choice of initial
parameter guesses made essentially no difference in con-
vergence time.

As currently written, NDJMap’s only outputs are es-
timates of y for each interval and approximate standard
errors for those estimates. (It does, however, have good
data-checking and informative error messages.) Much
could be done in the future to expand and improve it.
One future addition might be the ability to compare
maps and perform likelihood-ratio tests. Another might
be the ability to incorporate assumptions about geno-
typing errors, as Map� does. Finally, the EM algorithm
implemented in NDJMap does get very slow if there are
many uninformative markers in a row. It was fine on
all the data sets we tried (up to 20 diallelic markers),
but, in the potential future era of dense SNP maps, it
would probably have difficulty. The same likelihoods
maximized instead by the Baum algorithm (Baum et al.
1970; Baum 1972; Rabiner 1989) should have no prob-
lem handling that type of data.

Another crucial issue, of course, is the no-interference
assumption. Our method is the statistically optimal one
under the assumption of no interference. But it must be
assumed that real data will have interference (though it
is not clear whether the interference will be the same in
trisomic data as in standard disomic data). The effect
of creating the map under the assumption of no inter-
ference is overestimation of y. Since TETRAD, for the
most part, overestimated the y parameters in our sim-
ulations, whereas MAP scales them back down to ac-
count for the interference, it may be that TETRAD/
MAP ultimately is more unbiased than NDJMap. But,
of course, this is a matter of a fairly arbitrary balancing
of two biases in different directions, and, in any given
case, they may or may not be of equal sizes. In our real
data set, the difference between y values estimated by
MAP under the assumption of no interference and those
estimated with the standard level of interference (.35 in
the Rao map function) was negligible for small intervals
and was as much as 50% for larger intervals, so the
degree to which the biases balance would be different
in intervals of different sizes. The ideal resolution of this
issue would probably be to apply an EM algorithm to
maximize multipoint likelihoods calculated under an
appropriate interference model (e.g., the x2 model dis-
cussed by Zhao and Speed 1998), though in practice
the computational issues in combining the more com-
plex likelihoods with the EM algorithm might be
difficult.
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Appendix A

The EM Algorithm

E-step

The E-step requires calculation of, for each data string
W, the probability of each true string, T, that it could
represent. For example if , the true under-W = RUXR
lying string could be RRRR, RRNR, RNRR, or RNNR.
The probabilities of each of these true strings can be
calculated by Bayes’ formula, writing them as P(T =

. The com-tFW = w) = P(W = wFT = t)P(T = t)/P(W = w)
ponents of this formula can be computed as described
above in the Multipoint Likelihoods section, using the
guessed values for the y parameters. All of the constants
that are irrelevant to maximizing the likelihood appear
in both the numerator and the denominator, and so are
irrelevant to this calculation as well. After these prob-
abilities are calculated for each data string, W, the num-
bers can be added to get the total expected number of
each possible value for T (see the example below).

M-step

In the M-step, we need only to maximize the likeli-
hood of “expected data” that consists of Ns and Rs,
with no uninformative or partially informative markers.
This is straightforward and can be done independently
for each interval. For a given interval, let

s = expected number of R r R transitions

t = expected number of R r N transitions

u = expected number of N r R transitions

v = expected number of N r N transitions

where , the total sample size. Then thes � t � u � v = n
likelihood is

vs t u(1 � y) (y) (y/2) (1 � y/2) ,

which can be maximized analytically to give

2�( ) ( ) ( )n � s � 2 t � u � n � s � 2 t � u � 8n t � u[ ]
y = .

2n

(A1)
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Example

Consider the following simple 3-marker data set, with
the number in parentheses indicating how many chro-
mosomes with that observed pattern appear in the data
set:

RRR (10)

RRN (2)

RNN (3)

RNR (2)

RXR (1) .

We start with the guess that .y = y = .21 2

E-step.—There are eight possible true three-character
strings: RRR, RRN, RNR, RNN, NNN, NNR, NRN,
and NRR. We need to calculate the expected number of
each of these strings, given the data set and the guessed
parameter values. Each data string that does not include
Xs or Us just contributes a value of one to the corre-
sponding expected value. For example, each RRR string
contributes a value of one to the expected number of
true RRR strings, and contributes zero to all other
counts. The one RXR string in the data set contributes
some probability to the expected count of RRRs, and
some probability to the expected count of RNRs. The
probability that the RXR really represents RRR is

P(T = RRRFW = RXR)

P(W = RXRFT = RRR)P(T = RRR)
=

P(W = RXR)

( ) ( )[(1/2) # k] 1 � y 1 � y1 2

=
( ) ( ) ( ) ( ) ( )[(1/2) # k] 1 � y 1 � y � k y y /21 2 1 2

( ) ( ).8 .8
=

( ) ( ) ( ) ( ).8 .8 � .2 .1

= .941 ,

where k represents the previously discussed constants
that drop out of the calculation. So the RXR string con-
tributes .941 to the expected number of RRRs and

to the expected number of RNRs. The1 � .941 = .059
expected data set at this iteration is then

RRR (10.941)

RRN (2)

RNN (3)

RNR (2.059) .

M-step.—The likelihood of the expected data is

12.941 5.059(1 � y ) (y )1 1

10.941 2 2.059 3#(1 � y ) (y ) (y /2) (1 � y /2) .2 2 2 2

Maximized separately for the two intervals using equa-
tion (A1), this yields and . These val-y = .281 y = .2491 2

ues can then be fed back into the E-step for the next
iteration. The values for the full run with NDJMap are
given in table A1.

Table A1

Values of y1 and y2 over the Full
Run of NDJMap

Iteration y1 y2

1 .200 .200
2 .281 .249
3 .284 .253
4 .284 .253
5 .284 .253
6 .284 .253
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